152 research outputs found

    Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity

    Get PDF
    The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and Îş\kappa, the Ginzburg--Landau parameter. The secondary bifurcation in which the asymmetric solution branches reconnect with the symmetric solution branch is studied for values of (Îş,d)(\kappa,d) for which it is close to the primary bifurcation from the normal state. These values of (Îş,d)(\kappa,d) form a curve in the Îşd\kappa d-plane, which is determined. At one point on this curve, called the quintuple point, the primary bifurcations switch from being subcritical to supercritical, requiring a separate analysis. The results answer some of the conjectures of [A. Aftalion and W. C. Troy, Phys. D, 132 (1999), pp. 214--232]

    The Schr\"odinger operator on an infinite wedge with a tangent magnetic field

    Full text link
    We study a model Schr\"odinger operator with constant magnetic field on an infinite wedge with Neumann boundary condition. The magnetic field is assumed to be tangent to a face. We compare the bottom of the spectrum to the model spectral quantities coming from the regular case. We are particularly motivated by the influence of the magnetic field and the opening angle of the wedge on the spectrum of the model operator and we exhibit cases where the bottom of the spectrum is smaller than in the regular case. Numerical computations enlighten the theoretical approach

    A new approach to quantitative propagation of chaos for drift, diffusion and jump processes

    Full text link
    This paper is devoted the the study of the mean field limit for many-particle systems undergoing jump, drift or diffusion processes, as well as combinations of them. The main results are quantitative estimates on the decay of fluctuations around the deterministic limit and of correlations between particles, as the number of particles goes to infinity. To this end we introduce a general functional framework which reduces this question to the one of proving a purely functional estimate on some abstract generator operators (consistency estimate) together with fine stability estimates on the flow of the limiting nonlinear equation (stability estimates). Then we apply this method to a Boltzmann collision jump process (for Maxwell molecules), to a McKean-Vlasov drift-diffusion process and to an inelastic Boltzmann collision jump process with (stochastic) thermal bath. To our knowledge, our approach yields the first such quantitative results for a combination of jump and diffusion processes.Comment: v2 (55 pages): many improvements on the presentation, v3: correction of a few typos, to appear In Probability Theory and Related Field

    Onset of Superconductivity in Decreasing Fields for General Domains

    Get PDF
    Ginzburg–Landau theory has provided an effective method for understanding the onset of superconductivity in the presence of an external magnetic field. In this paper we examine the instability of the normal state to superconductivity with decreasing magnetic field for a closed smooth cylindrical region of arbitrary cross-section subject to a vertical magnetic field. We examine the problem asymptotically in the boundary layer limit (i.e., when the Ginzburg–Landau parameter, k, is large). We demonstrate that instability first occurs in a region exponentially localized near the point of maximum curvature on the boundary. The transition occurs at a value of the magnetic field associated with the half-plane at leading order, with a small positive correction due to the curvature (which agrees with the transition problem for the disc), and a smaller correction due to the second derivative of the curvature at the maximum

    Dimension dependent hypercontractivity for Gaussian kernels

    Get PDF
    We derive sharp, local and dimension dependent hypercontractive bounds on the Markov kernel of a large class of diffusion semigroups. Unlike the dimension free ones, they capture refined properties of Markov kernels, such as trace estimates. They imply classical bounds on the Ornstein-Uhlenbeck semigroup and a dimensional and refined (transportation) Talagrand inequality when applied to the Hamilton-Jacobi equation. Hypercontractive bounds on the Ornstein-Uhlenbeck semigroup driven by a non-diffusive L\'evy semigroup are also investigated. Curvature-dimension criteria are the main tool in the analysis.Comment: 24 page

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem

    Strong Convergence towards homogeneous cooling states for dissipative Maxwell models

    Get PDF
    We show the propagation of regularity, uniformly in time, for the scaled solutions of the inelastic Maxwell model for small inelasticity. This result together with the weak convergence towards the homogenous cooling state present in the literature implies the strong convergence in Sobolev norms and in the L1L^1 norm towards it depending on the regularity of the initial data. The strategy of the proof is based on a precise control of the growth of the Fisher information for the inelastic Boltzmann equation. Moreover, as an application we obtain a bound in the L1L^1 distance between the homogeneous cooling state and the corresponding Maxwellian distribution vanishing as the inelasticity goes to zero.Comment: 2 figure

    On the ground state energy for a magnetic Shcr\"odinger operator and the effect of the De Gennes Boundary condition

    Get PDF
    Motivated by the Ginzburg-Landau theory of superconductivity, we estimate in the semi-classical limit the ground state energy of a magnetic Schr\"odinger operator with De Gennes boundary condition and we study the localization of the ground state. We exhibit cases when the De Gennes boundary condition has strong effects on this localization.Comment: content revise

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables

    Tanaka Theorem for Inelastic Maxwell Models

    Get PDF
    We show that the Euclidean Wasserstein distance is contractive for inelastic homogeneous Boltzmann kinetic equations in the Maxwellian approximation and its associated Kac-like caricature. This property is as a generalization of the Tanaka theorem to inelastic interactions. Consequences are drawn on the asymptotic behavior of solutions in terms only of the Euclidean Wasserstein distance
    • …
    corecore